Datamation Logo

MapR, Cloudera Release Hadoop Search Tools

May 2, 2013
Datamation content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

Two notable big data vendors have launched Hadoop search tools this week. Cloudera announced general availability of the Impala SQL query engine, and MapR offered a beta version of LucidWorks search software along with its M7 release.

InformationWeek’s Doug Henschen reported, “Last fall MapR set out to improve on HBase, Hadoop’s built-in NoSQL database. On Wednesday it delivered on that promise and it announced a next move: integrating search capabilities with its M7 Hadoop distribution with partner LucidWorks.”

Computerworld’s Joab Jackson noted, “LucidWorks Search is the commercial version of the open source Apache Lucene/Solr full-text search engine. With the new MapR integration, LucidWorks Search can search through either data on the Hadoop File Systems (HDFS) or on files on other file systems. LucidWorks Search offers snapshots and mirrors for high availability, and eliminates much of the work required to install Lucene/Solr from scratch. It also offers native support for more data sources, a graphical user interface and a security framework.”

GigaOm’s Derrick Harris observed, “There is no shortage of confidence in the Hadoop space, and market leader Cloudera bolstered its own on Tuesday with the general availability of its Impala SQL query engine for Hadoop…. Launched as a private beta in May 2012 and made public in October, Impala is Cloudera’s attempt to address the growing demand for interactive SQL analytics on Hadoop data. It’s essentially a massively parallel database designed to share the same storage platform and metadata as Hadoop MapReduce, only it is its own separate processing engine.”

ZDNet’s Andrew Brust added, “This fits nicely with Cloudera’s announcement yesterday that it has formed an alliance with BI powerhouse SAS. That alliance is not just a business arrangement either, as SAS engineers have adopted their technology to deploy physically over Hadoop clusters and perform their analyses in a parallel fashion. This is a huge deal as it avoids data movement between SAS and Hadoop, analyses can be performed over full data sets and not just samplings of the source data.”

  SEE ALL
ARTICLES
 

Subscribe to Data Insider

Learn the latest news and best practices about data science, big data analytics, artificial intelligence, data security, and more.

Datamation Logo

Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.

Advertisers

Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.

Advertise with Us

Our Brands


Privacy Policy Terms & Conditions About Contact Advertise California - Do Not Sell My Information

Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.