WANs often need Quality of Service (QoS) configured to ensure that certain traffic is classified as “more important” than other traffic. Until now, it took a serious Cisco guru to configure a network properly for VoIP if the network was at all bandwidth constrained. AutoQoS, a new IOS feature for Cisco routers, makes deploying VoIP easy, even on busy WAN links. In this article we’ll cover the basics, what AutoQoS does, and some of its limitations.
With its first whack at AutoQoS, Cisco recognized the need to simplify VoIP traffic prioritization. VoIP is especially sensitive to any latency, jitter, or loss, and users will notice problems. To ensure the best possible VoIP call, the network must ensure that lower priority traffic does not interfere with time-sensitive VoIP. AutoQoS can be enabled on both WAN links and Ethernet switches to automatically provide a nice best-practices based template for VoIP prioritization.
QoS allows a router to classify which types of traffic are most important, and ensure that that traffic passed as quickly as possible. If necessary, other traffic will be queued until the higher priority traffic has had a chance to pass. Before a router can know when to queue versus when to attempt to pass all traffic, it must be configured with bandwidth settings for each link.
Configuring QoS on a Cisco router normally involves a complex series of interactions, which require understanding not only the protocols, but a router’s strange way of associating policies. The basic steps are:
Each of these “maps” are quite complicated and prone to error. Most sites are going to be duplicating effort because of common problems, like VoIP, needing QoS help.
QoS configuration is not simple. It requires understanding the protocols your network interfaces are using, as well as the type of data you’re passing. To configure QoS for VoIP, for example, you must understand how VoIP works. In short, it requires a guru. If you’re like me, you literally giggled out loud the first time you encountered the word, “AutoQoS.”
AutoQoS enables any network administrator to just “turn on” a solid solution for ensuring VoIP is happy. VoIP is the pain point for most organizations, so that’s what Cisco focused on first, and that’s what we’re focusing on here. Given the limited scope of AutoQoS, it’s believable that it works well enough. In reality, QoS configurations generally classify many types of traffic, and then place a priority on each one.
The main benefit of AutoQoS is that administrator training is much quicker. It also means that VoIP deployments often go much smoother, and upgrading WAN links isn’t usually required. Finally, AutoQoS creates templates that can be modified as needed and copied elsewhere for deployment.
Before talking about how to enable AutoQoS, which is literally three commands, let’s talk about where this works best, and what’s required to use AutoQoS.
First and foremost, you can only configure AutoQoS on a few types of router interfaces. These interfaces include:
Cisco Catalyst switches also support an AutoQoS command to prioritize Cisco VoIP phones, but you cannot prioritize generic VoIP protocols with it.
Next, there are some limitations with ATM sub-interfaces. If you have a low-speed ATM link (less than 768Kbps), then AutoQoS will only work on point-to-point sub-interfaces. Higher speed ATM PVCs are fully supported though. For standard serial links, AutoQoS is not supported at all on sub-interfaces. A quick litmus test to see if AutoQoS will work on your desired interfaces or not is to verify that the service-policy configuration is supported. If not, you’ll probably have to reconfigure some links.
AutoQoS will not work if an existing QoS configuration exists on an interface. Likewise, when you disable the AutoQoS configuration, any changes you may have made to the template after the initial configuration will be lost.
Bandwidth statements are used by AutoQoS to determine what settings it should use, so remember that after updating bandwidth statements in the future, you have to re-run the AutoQoS commands.
In the most standard situation, where VoIP isn’t performing as it was promised, the network admin can quickly save the day by running the following on the WAN interface:
interface Serial0
bandwidth 256
autoqos voip
If it’s the local network that needs tuning, the following can be run on Catalyst switches (if running Enhanced Images):
auto qos voip cisco-phone
auto qos voip trust
It really couldn’t be easier than that. For the WAN example, we told the router that interface Serial0 has 256 Kbps, and to enable VoIP QoS. The switch example is similar, for Cisco phones.
The neat part about this is that AutoQoS is actually doing more than just generating a configuration for you and forgetting about it. If you run the command show autoqos interface s0
, you will see much more than just your standard old interface configuration. It will show that a Virtual Template “interface” has been created, and that a class is applied to the interface. The same output will also show you the configuration of the template and class-map, with an asterisk next to each entry that was generated by AutoQoS. It’s actually keeping track of what was done automatically so that you can learn what AutoQoS is doing. As mentioned previously, however, don’t forget that removing the AutoQoS configuration will destroy all QoS settings on an interface, not just the ones that AutoQoS configured.
Finally, remember to enable QoS on both sides of a WAN link to truly prioritize VoIP packets. Don’t forget to read through the Cisco documentation before deploying it, even though AutoQoS is simple, in comparison. It is simple, but the more prepared you are the easier it is to deploy.
Cisco will hopefully continue this trend of providing Auto features for complicated, but common tasks. AutoQoS for VoIP sure does enable a much larger audience to correctly deploy VoIP over a wide variety of networks.
When he’s not writing for Enterprise Networking Planet–where this article first appeared–or riding his motorcycle, Charlie Schluting is the Associate Director of Computing Infrastructure at Portland State University.
Ethics and Artificial Intelligence: Driving Greater Equality
FEATURE | By James Maguire,
December 16, 2020
AI vs. Machine Learning vs. Deep Learning
FEATURE | By Cynthia Harvey,
December 11, 2020
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2021
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.