A user’s perception of how good a network is will generally be based on two main factors: speed and reliability. These demands, coupled with the need to accommodate ever more bandwidth-hungry applications, means that network administrators are under continual pressure to provide a faster and more reliable system. So how do you give your growing Ethernet LAN a performance boost, without implementing complicated upgrades that could affect the stability of your network? One common strategy is to replace existing 10BaseT Ethernet hubs with switches. In this article, we’ll look at how Ethernet switches can make your network faster and examine what factors you should consider before purchasing.
Ethernet switches
Ethernet switches are not a new technology, having been popular in corporate environments for a number of years. In such environments, where speed is a priority over cost, switches are pretty much the standard. However, in smaller LANs, and LANs that have been in place for some time, Ethernet hubs are still working away, albeit slowly.
Replacing your Ethernet hubs with switches can yield massive improvements in performance. Not only are switches capable of making same-speed transmissions faster than hubs, they can also unleash performance improvements in equipment that you already have. For example, many older hubs have transmission speeds of only 10Mbps, but many newer PC’s have network cards with 100Mbps capability. Plug a 100Mbps network card into a 10Mbps hub, and you will have a 10Mbps connection. Plug the same 100Mbps network card into a 100Mbps switch, and it is possible to achieve data transmission speeds of 200Mbps, as well as gaining the speed improvements provided by the basic process of switching.
How switches improve performance
Layer 2 and Layer 3 switches Layer 2 switches: Because switches make their forwarding decisions by using the MAC address, they are often referred to as Layer 2 switches in reference to the second layer of the OSI data model. Layer 3 switches: You can also buy Layer 3 switches, which have the capability to make their decisions based on the network address or service as defined by the third layer of the OSI model. Some high-end switches use a combination of methods, switching at the most appropriate layer depending on the configuration. The high level of flexibility found in switches means that they can also be used for other network configuration tasks, such as the establishment of virtual LANs (VLANs). |
To understand how using switches can make such a difference in performance, let’s quickly review how Ethernet networks function. When a computer connected to an Ethernet network wants to send data, it listens for any other traffic on the network segment; when the computer determines the media is clear, it attempts to transmit. Because Ethernet is a base-band technology, only one signal can use the cable at a time. So, if two machines attempt to talk at exactly the same time, their transmissions collide, damaging the data.
The network cards of the sending PCs sense the collision, wait for a random time period, and then attempt to resend the data. If the cable is clear this time, the transmission is completed. If it isn’t, and another collision occurs, the re-transmit process repeats. This collision-based system means that the more devices connected to an Ethernet segment, the more likely collisions are to occur, degrading performance exponentially. Switching provides vast improvements in speed by literally preventing these collisions.
In a switched network, each station has its own dedicated segment. The sending PC doesn’t have to consider that another device may be using the segment, which eliminates the possibility of collisions. The isolation of devices in this way is known as microsegmentation. With a switch in place, when the PC wants to send data, it transmits directly to the switch without having to wait. The switch examines the data, determines from the destination Media Access Control (MAC) address which other port on the switch to send the data to, and forwards it to that port.
Eliminating the need to worry about collisions provides a further opportunity for switches to improve performance, by allowing communication to occur in full-duplex mode. When a PC and a switch communicate in full-duplex mode, they send and receive data on the cable at the same time. This is possible because in a full-duplex communication, the two connected devices drop the standard Ethernet communication system (which by its nature caters to multiple accesses of the media) in favor of a more direct one-to-one method. Full-duplex communication can deliver double the throughput–a 100Mbps connection running in full-duplex will effectively become a 200Mbps connection.
Buying a switch
When you’re buying a switch, you need to consider a number of factors:
Managed devices have the ability to communicate with a network management system, usually via Simple Network Management Protocol (SNMP), or are capable of communicating with proprietary network management systems.
Once you have decided on the features you need, it’s time to go shopping. When you start to look around for switches, you may notice that prices vary a great deal. With switches, as with any other type of networking equipment, the name makes quite a difference. Products from manufacturers such as Cisco or Nortel are likely to cost more than those from some of the smaller and less well known manufacturers. That doesn’t mean a device from a smaller company may not be suitable for your needs. If it has the features, backup, and support you’re looking for, then it may be the switch for you. As always, shop around and compare features and prices.
Whether you go with one of the big names or buy from a smaller manufacturer is a matter of personal and business preference. From a price perspective, the biggest influence is likely to be whether the unit has management capabilities. For an unmanaged switch, costs can be as low as few hundred dollars for an eight-port unit. For a larger, managed unit from a major manufacturer, you can expect to pay between $75 and $125 per port.
A risk-free upgrade
Perhaps the most attractive feature of using a switch as an upgrade is that doing so is almost risk free. The implementation of a new switch generally has no effect on other networking components, such as cabling, network cards or other network devices. Depending on which switch you purchase, in many cases, the actual upgrade is as simple as connecting a power cord to the new switch, unplugging the cables from an existing hub, and plugging the cables into the switch. If you are looking for a quick, easy and reliable way to improve the performance of your Ethernet LAN, switches represent what could be the easiest network upgrade you ever do. //
Drew Bird (MCT, MCNI) is a freelance instructor and technical writer. He has been working in the IT industry for 12 years and currently lives in Kelowna, BC., Canada. You can e-mail Drew at drewbird@netcom.ca.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.