The war for talent is raging across industries and countries, and nowhere is the fight more intense than in data science and analytics. In fact, Gartner anticipates that there will be a shortage of 100,000 data scientists in the United States alone by 2020.
The reality: traditional HR struggles to fulfill the analytics remit
Even the most apt HR teams are already struggling to fulfill their analytics remit. They rely on traditional approaches to HR that don’t resonate with this unique set of experts. According to a recent survey of analytics professionals, these approaches can create a number of barriers to success, including:
1. Negative first impressions. Analytics talent, especially recent graduates, expect to work in dynamic organizations. Put them through a long-winded, paper-based hiring process, and you can be sure to create a negative first impression. Moreover, in the analytics community, word-of-mouth matters.
2. Narrow sourcing. A brand that resonates with traditional job applicants doesn’t necessarily enjoy the same profile within the analytics community. This can pose a challenge for recruiting analytics talent.
3. Imbalance between monetary and non-monetary rewards. A US consumer goods company recently learned that its incentive package is popular in core business and IT areas, but not among analytics talent; specifically, retention bonuses were less effective.
4. Unclear career tracks. Analytics talent cite “lack of a growth trajectory” as a primary reason for leaving their previous employer, according to the above survey.
The fix: take inspiration from leading analytics organizations
To win the talent race, traditional HR approaches for hiring, retaining and developing talent must be replaced by customized approaches for this unique audience, including:
· Use recruiters that specialize in analytics – or, even better, hire recruiters that are former analysts. In 2015, a mobile gaming company hired an ex-Wall Street quant to manage analytics recruiting. Because of her prior analytics experience, she knew how to screen candidates effectively. She also understood what matters to top candidates, and was thus able to present analytics at the organization in the best light. In 18 months, she more than doubled the size of the team.
· Practice what you preach – by using analytics within the HR function, including candidate profiling, attrition prediction, and workforce planning. Google applies predictive analytics to optimize its hiring process end-to-end, from optimizing the number of interviews per candidate to predicting which candidates have the highest probability of succeeding after being hired. eBay tracks not only metrics around hiring processes, but also analyzes promotion, retention, and compensation data to ensure optimal talent management.
· Hire analytics leaders – with the optimal balance of technical, communication, interpersonal, and managerial skills. Soft skills are important, not only because leaders tend to hire people who resemble themselves, but also because they’ll need to be able to forge connections with the wider business.
· Proactively source diverse candidates –HR teams should consider sourcing from non-traditional candidate pools, for instance, by partnering with organizations that support under-represented groups. In addition, it can be beneficial to source candidates from diverse academic and technical backgrounds; for example, a retailer sourced computational biologists, nuclear engineers, and physicists for data science roles, rather than exclusively sourcing data scientists from other technology companies.
· Develop a learning culture – Consider that, in the US, 86% of all workers would invest free time to learn new skills. In our experience, analysts tend to be even hungrier for new knowledge. They aim to continuously learn new skills, from the latest external trainings on statistical algorithm or data visualization, to internal trainings on business processes. For example, Zynga created a data science apprenticeship program, wherein new hires take several online data science courses, complete a series of data science projects under the supervision of a senior data scientist, and at the end of the 18-month program, join the data science team.
These examples show how organizations and their HR teams can successfully attract scarce analytics talent. Data scientists have special requirements and know their value. Organizations need to acknowledge this and act decisively upon it if they want to stand a chance at recruiting the best and brightest – and capturing new business value, as a result.
This article is part of series on Data Science. See also Accenture’s Preparing for a Data Science Transformation.
About the authors:
Robert Berkey is a managing director at Accenture Applied Intelligence, where he leads the Strategy & Transformation offering globally.
Dr. Amy Gershkoff is a data consultant; she was previously Chief Data Officer for companies including WPP, Data Alliance, Zynga, and Ancestry.com.
Fernando Chaddad is a managing director at Accenture Applied Intelligence, where he leads the Strategy practice for Latin American.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.