If there was ever any real doubt, the argument in favor of embedding data and intelligent technology at the core of business has been conclusively settled. In an era where Artificial Intelligence is reshaping the way we do business, and where technology is only as smart as the analytics that powers it, it’s now widely understood that data science gives organizations a clear competitive edge.
Take a leading e-commerce retailer that provided personalized recommendations to each of their customers and drove nearly $1B in incremental annual revenue. Or a European telco that dramatically increased its conversion rate – by up to 50% — by using real-time data to target customers with the most compelling content in the most relevant channels.
But organizations can only expect to see these benefits once they are truly ‘data-science-ready’. That means embracing new ways of embedding data science across business functions and processes. If they do, the benefits far outweigh the investment.
In this column, we will explore five different aspects of data science transformation and examine how analytics and intelligent technology create a solid foundation for success – today and in the future. Read on for a sneak peek.
Five ways to get data-science ready. Today.
1. Rethink HR. Many companies struggle to acquire, develop, and retain aggressively sought-after data science and analytics talent. And these challenges will only grow more acute as demand continues to grow. The uniqueness of data science talent calls for a whole new approach to HR, which means investing in specialized recruiters and structuring relevant compensation and incentives to land the best candidates. But even companies that manage to get these steps right subsequently fail to invest (enough) in talent development and retention. It’s crucial for organizations to map out clear career paths and invest in a learning culture that will retain the best data scientists.
2. Data Science. Integrate it. Analytics has become too valuable to be a back-room function, decoupled from the daily business. A 2017 Burchworks survey revealed that the reason why nearly 50 percent of data scientists said they’d left their last employer was the absence of a data culture. Organizations need to integrate data science into the wider business, give data scientists “seat at the table” alongside key decision-makers across the company, and have data-driven insights informing decisions throughout the organization.
3. Unlock new intelligence from your data. Siloed data leads to siloed analysis which, in turn, leads to limited insights. All too often, the impact data scientists can make through their analyses is limited by the fact that they can only tap a fraction of an organization’s data. To unlock value with data science, organizations first need to empower their developers to create a unified view of the customer, in a single database, filled with clean, structured and secure data.
4. Industrializing the data science playground. Even when they manage to hire great data scientists, many companies limit that talent by making them work with outdated technology, which lacks the size, speed, scalability and security needed for a long-term enterprise solution. While upgrading infrastructure can come with a hefty price tag, it doesn’t have to. Some technology providers offer proof-of-concept trials or elastic pricing that allows companies to test the technology. What’s more, many simple, low-cost investments can still have a transformative impact on the business.
5. Operating with new agility. Achieving rapid value and ROI from analytics and data science talent requires a new type of delivery model. Fundamentally, that means an agile model. What makes it different? Code ships frequently; prototypes are tested sooner and data from real users provides actionable feedback. All these will help data science teams be far more effective.
We’ll explore each of these five areas in more detail, but keep the following in mind: Data science transformation is a journey, not a destination. And its impact is greater than the sum of its five parts if you approach it holistically, across your enterprise.
This article is part of series on Data Science. See also Accenture’s Relying on Traditional HR Will Lose You the Analytics Talent Race.
About the authors:
Robert Berkey is a managing director at Accenture Applied Intelligence, where he leads the Strategy & Transformation offering globally. Dr. Amy Gershkoff is a data consultant; she was previously Chief Data Officer for companies including WPP, Data Alliance, Zynga, and Ancestry.com.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.