The big data market is strong and thriving — although it isn’t always called “big data” these days.
The term “big data” first became part of the tech lexicon in the late 1990s, when people like John Mashey at SGI began using the phrase to describe the enormous and growing stores of enterprise data that were difficult to store and analyze using the technology available at the time.
In 2001, analyst Doug Laney suggested a definition of big data that included three Vs: volume, velocity and variety. Over the next few years, Laney’s definition became something of an industry standard, and some people added a fourth V — variability — to the definition.
In 2005, big data technology took a dramatic step forward when Yahoo debuted the Hadoop open source distributed data store. The project became the lynchpin for an entire ecosystem of commercial and open source data storage and analytics solutions.
In 2014, IDC and EMC released their most recent digital universe study, which revealed that the amount of data stored by the world’s digital systems is growing by 40 percent per year. The companies predicted that by 2020, the digital universe would include 44 zettabytes of information. That’s nearly as many bits as there are stars in the universe, and it’s enough information to fill a stack of 2014-era tablets stretching to the moon 6.6 times.
Today, big data certainly hasn’t become any smaller, but the size of growing data stores no longer gets as much attention as it once did. Instead, most organizations are focused on analytics, data science and machine learning. They have accepted that managing big data is simply a part of doing business; if they want to compete and succeed, they need to find ways to turn those big data stores into valuable insights.
Enterprise spending on big data technologies continues to climb as it has for the past decade. According to IDC, worldwide revenues for big data and business analytics are likely to grow from $150.8 billion in 2017 to $210 billion in 2020. That’s a compound annual growth rate of 11.9 percent.
“After years of traversing the adoption S-curve, big data and business analytics solutions have finally hit mainstream,” said Dan Vesset, an IDC group vice president. “BDA as an enabler of decision support and decision automation is now firmly on the radar of top executives. This category of solutions is also one of the key pillars of enabling digital transformation efforts across industries and business processes globally.”
And organizations are reporting that their big data initiatives are having a positive impact on their bottom line. In the NewVantage Partners Big Data Executive Survey, 80.7 percent of respondents said that their big data investments had been successful, and 48.4 percent said that they had realized measurable benefits as a result of their big data initiatives.
Those sorts of results are likely to encourage enterprises to continue investing in big data, but the types of big data solutions they are adopting are shifting. According to Forrester Research, “The shift to the cloud for big data is on. In fact, global spending on big data solutions via cloud subscriptions will grow almost 7.5 times faster than on-premise subscriptions.” The firm added, “Furthermore, public cloud was the number one technology priority for big data according to our 2016 and 2017 surveys of data analytics professionals.”
The cloud is particularly popular for big data analytics that rely on machine learning technologies. Machine learning requires advanced — and expensive — computing hardware, but running machine learning in the cloud makes it possible for organizations to access this technology at a fraction of the cost of what it would take to install it in their own data centers. Although organizations face some challenges related to cloud analytics, experts say this cloud analytics trend is likely to accelerate in coming years.
As the big data market has matured, vendors have developed a wide variety of different big data technologies to meet enterprises’ needs. This is a very broad market, but most big data solutions fall into one of the following categories:
Given that the market includes so many different types of big data solutions, it should be no surprise that an extremely long list of companies offer big data products. The list below includes some of the best-known big data companies, but there are many others.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.