Given the hype surrounding artificial intelligence, businesses are now exceptionally eager to deploy this emerging technology. Executives realize that if they don’t deploy AI, they will certainly fall behind their competitors. Yet the reality of AI and ML is that it’s complex and expensive – and can be quite confusing. Plenty of AI projects end up as “expensive science projects” that businesses spend lavishly on, only to realize disappointment.
In this webinar, we discussed:
1) Where is the market in terms of real adoption of ML and AI?
2) The data issues executives need to solve – or at least understand – before considering ML. Advice for getting started?
3) Challenges: What are the unstated assumptions that cause projects to get tripped up?
4) How does miscommunication contribute to AI project stumbles?
5) Ethics and AI: How should executives be thinking about this?
To provide insight into the contradictions in AI, I spoke with two leading experts:
Ya Xue, VP of Data Science, Infinia ML
James Kotecki, VP of Marketing and Communications, Infinia ML
Moderator: James Maguire, Managing Editor, Datamation
Download the podcast:
Top Quotes:
Xue: Oh, I think actually companies are using it. There are some well known example like Tesla self-driving and Google, Google search, Apple’s Siri and all the other application, famous applications. Even just talk about those less famous examples like our company, Infinia, we’ve been in business for almost three years. We’ve done over, I would say, over 30 different projects, different application area and different companies. So we’ve seen a lot of actually companies are using it, using AI as a powerful tool to reduce their cost, to improve business efficiency, and then creating real business value.
Kotecki: But there’s also some nuance to this, in that what does it mean to do AI? And how do people define what it means to actually do it? There’s some truth to that 4% metric as well, whatever… It’s your different numbers but it’s always this very low, this paltry number of people that are actually doing AI and getting real business value from it. I think there’s probably a lot more people who are dabbling, who say they’re doing AI, who throw the label of AI on it, because as a marketer, I can say this from a marketing perspective, it’s better to say that you’re doing something sexy in AI than may be something else. And it’s just a term of the moment.
Kotecki: And also people that are doing a lot of things in AI and haven’t figured out how to operationalize it, how to productionize it, how to deploy it in a widespread way that’s actually getting day-to-day value. It’s not just creating a cool algorithm, which we can certainly do. It’s getting all the way to people in your organization actually getting use from it, which involves a lot of things involving AI, and then a lot of steps after that that involve a lot of change management that’s not as easy as writing an algorithm. So it’s a long process that we’re in the middle of now, a long transformation.
Top Quotes:
Xue: Oh, yes. There are many gaps, actually. So first one is the illusion about AI. So some people have the misunderstanding, like the AI is just a miracle. If you download some off-the-shelf software and you threw the data in, you can get the results you want. So the part that people don’t get is AI is pretty much like any other kind of research and development. It takes time and effort to happen. So that’s one thing, it’s set the right expectation, that’s very important. And another thing executives don’t understand is the consequence of AI success. Yes, it’s a success, and you can make a prediction at 99% accuracy. However, when you deploy it, it’s gonna change your work flow under your business process. Are you ready for it? That’s a bigger question. It has happened multiple times. We develop something, finally you could actually look at, when it’s time to put it into production, oops, we may not be able to do it.
Kotecki: I think there’s a related factor here, which is, I’ve gotten a sense from several past clients, and I think there’s just a sense in the zeitgeist out there that executives would not say this publicly, but a lot of the reason that they might wanna use AI or ML is to replace people, right? Reduce headcount. And they go into projects thinking that that’s what they’re gonna do. Oftentimes, we have seen, just in our narrow corner of the universe, the executives who think that are often then shown that they still need those people to do what Ya is talking about, to do the kind of reviews or they need to reassign those people to higher level projects.
Top Quotes:
Xue: I think the first executive have to recognize is there’s a potential risk because it happens. Bias introduced either in design or in the data, mostly from the data, I would say. Data like machine learning algorithm models need to be trained with large amount of data. Then if the data is under-representing or over-representing a certain group, say, it could be a gender group, it could be a racial group, then the machine learning algorithm will learn that, and they embed that information into the model then will produce biased results. So it’s a well-known problem and the machine learning community is working very hard trying to address this issue.
Kotecki: It’s certainly something to be concerned about. Even if you were completely unethical as an executive yourself, you should be concerned about the headline risks. And any time that you see in the headline of a major mainstream publication, the term bias and the term AI, it’s going to be problematic for whatever company is being highlighted in that article. Even though I think it’s also important to remember that when you hear the term bias, it actually doesn’t necessarily have a negative connotation in and of itself in a data science context. Because Ya was hinting at this, you want to maybe bias an algorithm in favor of candidates that are smart, for example, if you’re looking at a job screening application. So it’s not that we necessarily wanna not have any bias, but we wanna understand it and we wanna get rid of bias that is untoward.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 07, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.