IBM this week unveiled the latest update to its SPSS predictive analytics software, giving enterprise customers the ability to monitor and analyze social media data that’s constantly being updated and shared via Facebook, Twitter, RSS feeds, blogs and wikis.
IBM SPSS Modelerpromises to monitor changes in customer and employee sentiments, uncover deeper insights and predict the key factors that businesses need to grow their sales, retain top performers and quickly react to subtle changes in their industries or product categories.
The software’s text analytics component identifies emoticons that are often included in a blog entry or tweet and can discern between different meanings or references for the same word. It also understands slang terminology and abbreviations so users get an accurate understanding of what people are saying about their companies and products in the vernacular that tweeters and bloggers use.
IBM (NYSE: IBM), which acquired SPSS for $1.2 billion last year, said customers such as Navy Federal Credit Union, Rosetta Stone and Money Mailer are already using SPSS Modeler Professional to make “faster and more personalized decisions” from information culled from a variety of data sources.
Companies large and small are spending billions on software tools that deliver real-time social networking analyticsnot only to track consumer behavior and sentiment but to offer discounts and promotions on the fly.
One of the biggest challenges for any company tracking their brand online is creating the taxonomies and definitions that fully encompass everything they sell and do, so whatever tracking or analytics software they’re using knows what to look for out in the expansive social media world.
IBM thinks it’s addressed most of those concerns by creating new semantic networks with 180 different vertical taxonomies — covering everything from consumers electronics and life sciences to banking and insurance — and some 400,000-plus terms, including more than 100,000 synonyms and brands.
Armed with the intelligence cobbled from Twitter, Facebook, industry blogs, news blogs and other online sites, companies can then merge this analytical data with structured data derived from customer e-mails or call center notes to build a complete view of, for example, a new product release to see what customers, partners and competitors are saying about the product.
Eventually, IBM sees customers using this data to more accurately predict demand for new products, quickly reverse poor policy or product changes and more effectively market and advertise to online shoppers.
According to the most recent survey by Forrester Research, interactive marketing spending will explode to more than $55 billionby 2014 and represent more than 20 percent of total advertising spend.
Also, the software gives companies a great tool to help monitor what the world is saying about its top competitors.
“Predictive analytics allows us to leverage unsolicited and unbiased customer feedback and strategically improve our business,” Nino Ninov, vice president of strategic research at Rosetta Stone, said in a statement.
“We now can also monitor competitor and industry websites, including blogs and news feeds, and other publicly available textual information to maintain a current view and better understand how the public perceives our competition.”
Larry Barrett is a senior editor at InternetNews.com, the news service of Internet.com, the network for technology professionals.
Ethics and Artificial Intelligence: Driving Greater Equality
FEATURE | By James Maguire,
December 16, 2020
AI vs. Machine Learning vs. Deep Learning
FEATURE | By Cynthia Harvey,
December 11, 2020
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2021
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.