As with any trend that comes on too fast and too strong, Big Data is experiencing pushback. There are four neat categories most of these critiques fall into.
First, a good deal of the commentary is predictable skepticism expressed by the lightly informed, such as David Brooks’ “What Data Can’t Do” column in The New York Times.
The second category of critiques focus on semantics, arguing that Big Data is really about analytics, not the size of the data, or that Big Data isn’t really all that big, etc.
Fine, but who cares? Maybe if the marketers and analysts had favored the term “data consolidation,” this line of thinking would have never materialized in the first place.
A third type of critique, such as that voiced by President Obama’s 2012 campaign CTO, Harper Reed, who famously quipped that “Big Data is bull****,” seems to fall under the heading of “smart people spouting bull**** in order to stir up controversy.”
Mr. Reed is correct when he complains about the marketing and PR spin surrounding Big Data, but when is there not? In a world where pre-product startups regularly refer to themselves as “leading providers,” tuning out this nonsense noise is just the price of admission.
Finally, there is the fourth category of Big Data pushback, and this one merits attention: fear.
The latest NSA Big-Data related leak involves license plates. Yep, license plates. Cities all over the U.S. (and the world) have been deploying license plate scanners to catch people running red lights, to prevent toll road cheats, and to study traffic patterns.
The most recent revelation from the Snowden treasure trove revealed that the Department of Homeland Security (DHS) wants to build a nationwide database that collects information from pretty much every license-plate reader it can find.
In other words, rather than just monitoring citizens’ communications and tracking our mobile phone GPS coordinates, the government now wants to track us as we travel by car – which should outrage anyone even vaguely concerned about privacy.
Facing a torrent of criticism, DHS recently withdrew its request, but critics point out that the media is getting this story wrong, with naïve journalists believing that the database has been scuttled, which is not true. Such a database actually already exists, run by private company Vigilant Solutions. The DHS’ recent proposal was just to gain broader access rights to use it.
So, the U.S. government has a gigantic database containing information about me that should be private, a database that is accessed often, by a number of agencies, with little oversight? Where have I heard that before? Oh, right, this is the common theme in all of the Snowden leaks.
Obviously, this sort of Big Data pushback has merit. Lots of it. But fears about the loss of privacy aren’t just limited to the government.
“Every person’s data footprint grows each time they use the Internet, a mobile phone, an iPad, or even a landline phone,” said Andy Rusnak, Americas Enterprise Intelligence Leader at EY (formerly Ernst & Young). “It also grows when people drive through a toll lane with an EZ Pass, swipe a credit card, or turn the channel on their TV. And today, face recognition technology exists to expand people’s data footprint when they walk into a store – even if they don’t have a mobile device with them.”
When you consider all the corporate and government entities that want to track us in granular detail, it makes you wonder whether privacy is a thing of the past. How can individual citizens ever reclaim their privacy when they have so little of it left?
There’s no easy answer. Regulations protect certain key data points about us, such as health information, but as data analysis tools evolve, will that matter? Facebook can already predict with eerie accuracy whether or not romantic relationships will endure, so it’s no big stretch to imagine that if you, say, contract malaria on your trip to Guinea-Bissau, Facebook or Google will certainly know it.
Rusnak believes that corporations should be proactive about protecting privacy, embracing a do-unto-others policy. “If you focus your use of Big Data on making your customer’s life better, then your use of Big Data stays true to the social contract inherent in the golden rule,” he said. “If you focus your Big Data efforts on things that solely benefit your company and not the public or your customers, then you’ve broken the social contract and have probably gone too far in using Big Data.”
I think another factor driving the fear of Big Data is the rise of automation and robotics. Workers are, yet again, grappling with the fact that many things we do today will be done by machines tomorrow. And the parts of the job left for humans will tend to be the most error-prone elements in the production chain.
North American workers have, for years, feared that their jobs would move to India or China or some other developing country, and those fears have been borne out. Now, however, workers in India, China, etc. worry that the jobs they gained through outsourcing will be snatched away by robots.
This isn’t always a bad thing. My Roomba does nothing other than save me (and my wife) time. Robots and automation are good things, taking over mundane, repetitive tasks, and reducing errors as they do. But they’re not job creators.
In this age of an eroding middle class and sky-high inequality, fears about losing any sort of foothold in the economy, no matter how tenuous it may be, are valid.
The fear of machines dovetails with fears about Big Data. Big Data should prove to be a boon to Artificial Intelligence, creating smarter and smarter robots (and computer systems), and AI will pour more data points into more and more applications. As a result, knowledge workers will, once again, have to rethink how they fit into the digital economy. This doesn’t mean we’ll be displaced (although many of us probably will), but that we’ll need to replace our easily automated skills with ones that machines just can’t accomplish.
At this early stage of AI and robotics, machines still only do what we tell them to. Humans retain the controls, which is a mixed blessing, since humans are so error-prone. If we fall into the trap of comparing ourselves to automation, we come up short – but only because it’s a false comparison.
In the field of data analytics, humans make mistakes all the time, but they also add a level of knowledge and awareness that no robot will be able to match for the foreseeable future.
“Scientists using the same dataset and the same tools may come to different conclusions when analyzing a problem. Sometimes the answer may be open to interpretation, but in many cases, one of the data scientists’ analyses will just be plain wrong,” said Sandy Steier, CEO of 1010data, a provider of Big Data discovery and sharing tools. “Further, even when the data scientist has done everything correctly given the hard data, there are often additional, less tangible factors that need to be considered, the kind of factors that experienced business people just know.”
That last insight, “factors that experienced business people just know,” is one that I suspect will haunt Big Data for a good while. There’s a ton of truth to the “just knowing” of experts. I’ve been a journalist for a couple of decades now, and there are things I just know about storytelling, connections I’ve made and experiences I’ve collected that inform my knowledge on a subconscious level.
The flip side of that is that there are many things we think we “just know,” which we’re completely wrong about. Big Data is very good at exposing these things. After all, in Big Data’s origin story, Moneyball, Oakland A’s GM Billy Beane wondered why scouts just knew that he’d be a pro ballplayer. It was because he simply looked like a ball player. His frame, gate, arm strength, and demeanor all told scouts he’d be a major league star. He wasn’t. When Beane later rose to become the GM of the A’s, he finally asked himself whether he had failed to live up to his abilities, or whether the scouts were just wrong. He turned to data analysis to find out. The answer: the scouts’ assessments were hopelessly clouded by bias. Too often they relied on anecdotes in place of measurable evidence.
Data makes those biases abundantly clear, and, perhaps, that’s what people fear the most about Big Data: it has the potential to show us where we’re wrong and will have the evidence to prove it. No one likes being told they’re wrong, but in the Big Data age, we better start getting used to it.
##
Jeff Vance is a technology journlist based in Santa Monica, California. Connect with him on LinkedIn, follow him on Twitter @JWVance, or add him to your cloud computing circle on Google Plus.
Photo courtesy of Shutterstock.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.