Amid all the hoopla over the power of Big Data to digest the gut-busting flow of data from web sites, social media, RFID sensors and mobile devices – with the glamour of bedazzled visualizations and real time insights delivered to your handheld – we often forget that the weaknesses of analytics tools continue to bedevil end users.
Data from a summer survey of more than 300 senior executives and managers from medium and large companies around the world highlights both the promise and the pain of current analytics tools. The vast majority of these respondents were in key functional areas outside of IT: finance, sales, marketing, customer service and operations like supply chain or sustainability.
As you can see in the table below, a surprisingly large percentage of the respondents are not exactly totally thrilled with their analytics tools.
Simply put, more than half say their tools don’t give them the information they need, don’t include key data points, aren’t available to all who need the info, aren’t fast enough or easy to use. And anyone who is surprised at those gripes has been hiding in the data center too long. I’ve heard the same (and more) complaints five or even 10 years ago.
Ironically, some of their frustrations come from heightened expectations. The users have gotten a great deal of value from these tools over the years, but they know they could get even more value if they were predictive, included unstructured data and were more broadly available.
These three “success problems” have been cited in other surveys over the past five years. But it is surprising they remain annoyances for two thirds of the survey respondents in 2012.
Even more surprising are gripes that are older than a Razr cellphone. Six years ago almost two thirds of the respondents to a survey I managed of a similar-sized group of business executives and managers, mostly outside of IT, complained the tools were too hard to use. Fast forward to 2012 and 55% complain the tools are too hard to use.
Not much progress, despite all the new fancy front end user interfaces, visualization and other “solutions” to the challenge. While the poor ease of use complaint also is tied up in lousy public and college education, poor training and other non IT issues, the industry still has a long way to go.
Another perennial gripe must be especially frustrating for IT pros, their managers and the CFOs who funded so many solutions: In 2006, six out of ten survey respondents complained that their overall systems performance was lousy. Fast forward to 2012, after untold billions have been spent on data warehouse appliances, in-memory processing, faster servers, gigabit Ethernet networks and a host of other hardware/software accelerators. The end result: 59% say the tools are too slow.
Given the margin of error of the two surveys and slight differences in demographics and the exact wording of the questions, I wouldn’t come to a definitive conclusion. But it is safe to say we haven’t moved the needle much in improving performance issues.
Of course I’ve heard what you would expect to hear from vendors asked to explain why so little progress after so much innovation and product sales. One senior marketing official who has been around the industry for more than a decade acknowledges that most of the tools out there are really focused on the past.
“While everybody has better visualization tools, none of them have focused on the predictive side,” noted Nobby Akiha, Actuate’s senior vice president of marketing. And the most common predictive analytics tools – think R, SPSS and others – are harder to use, he conceded.
However, improving the ease of use of predictive tools is high on the to-do list of many analytics vendors. Another key perspective on this is the availability of Big Data, Akiha added.
“Big Data is giving more confidence in the predictive model,” he explained. “In the past, predictive analytics depended on sampling and modeling, but now Big Data offers enough processing power to analyze the whole data set, not just sampling.”
And I’ll bet throughput and ease of use complaints will persist long after the next new hot trend after Big Data cools.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.