Here’s our list of the top 10 BI software mistakes you should avoid, why and how:
1) Lack of executive sponsorship and active business involvement.
Everyone knows that any major IT effort needs executive sponsorship, but in the case of a BI software implementation the big mistake by the CFO, the chief marketing officer or other sponsor is to not be actively involved. It takes frequent injections of business process and strategy savvy to guide the IT team and prevent scope or data creep.
BI projects typically go way over budget when a directionless IT staff isn’t given enough parameters about how much data is enough. They get into the bragging rights trap – my warehouse is bigger than yours. Costs skyrocket, response times lag, results are muddied and the entire project capsizes from its own weight.
Without continuous guidance from the business side, “IT tries to stuff everything into a warehouse to address absolutely any question a user could conceivably ask,” notes Howard Dresner, a former Gartner analyst who coined the phrase business intelligence and author of a new book on performance management on performance management.
“As a result, IT burns tons of cash, takes far too long and creates inordinate complexity. Warehouses needn’t be big, they just need to be useful.”
2) Inadequate scrutiny over the data.
Just having the right extraction-transform-load tool doesn’t make the data correct and current. Poor quality data can destroy the credibility and utilization of data warehouses and business intelligence systems.
This is not an IT challenge but a business challenge. If the key business staff aren’t involved in identifying the right data stores and solving the inconsistencies – how many definitions of customer are in your systems? – the project will fail.
3) Not easy to use.
Too many IT implementers forget that the biggest benefits of a BI software solutions come from widespread deployment. This means the user profile will range from a doctorate in mathematics to an associate degree from the local community college.
The software user interface, graphics and what-if query capabilities have to be intuitive. If the fancy chi-squared distributions are the most prominent tool, you’ll freak out many users. Keep the heavy-duty tools easily available, though – the power users want everything.
4) Poor performance.
User expectations about query response times will be much higher than you realize. If the data warehouse has more than one terabyte or more than 100 heavy users, consider more processor horsepower via a data warehouse appliance. Develop more cubes or other ways to optimize performance now, not afterwards.
A related mistake is not recognizing the enthusiasm factor. A successful system begets huge interest.
“Some organizations are cursed with success and can’t seem to keep up with user demand,” warns Wayne Eckerson, director of research at The Data Warehousing Institute (TDWI), the pre-eminent organization in the BI field for IT pros.
5) Too many or too few BI software tools.
Both Dresner and Erickson warn that IT has to be careful about how many tools are available. Too many tools lead to a lot of confusion and soaring training costs. Too few tools frustrate the users.
Just relying on the tools provided by an ERP vendor may not be the way to go, warns Dresner. Think strategically about the toolset, he recommends.
6) Going it alone.
Ten years ago it was hard to find a lot of BI expertise in specific markets. Now the maturing of the field and plentiful resources make it a crime for any organization to launch a program without thoroughly vetting the process, project, products and people. TDWI membership should be a pre-requisite before moving ahead.
If you’re in a big company, urge the CIO to develop a BI Competency Center. A core group of experts within your organization can become internal consultants to business units. The competency center approach will help avoid a huge number of mistakes and wasted money.
7) Allowing the spreadmart plague to spread.
Eckerson invented the term spreadmart in 2002 as a label for the proliferation of mini-data warehouses and business intelligence systems based on spreadsheets. Typically a department would try to solve a business problem by creating a spreadsheet with lots of macros linked to transaction systems. These spreadmarts were typically undocumented, impossible to audit and extremely fragile. But they’re easy to set up and use, thanks to the ubiquity of Excel.
“Today, spreadmarts are the bane of IT departments who can’t control their proliferation, and the nemesis of CEOs who can’t gain an accurate view of enterprise activity because of them,” notes Eckerson.” In many respects, spreadmarts are the corporate equivalent of terrorists—just as soon as you eliminate one, ten more spreadmarts pop up to take its place.”
Eckerson offers a number of tips on how to combat the problem on the TDWI Web site.
Essentially, IT has to develop and support a superior solution. And the CFO has to use Sarbanes Oxley as a bulldozer to crush as many spreadmarts as possible. Especially maverick systems that directly feed into the P&L.
8) Inflexible design.
Thanks to globalization, an extremely volatile economy and other factors, building a rigid data warehouse and business intelligence system is a sure fire route to misery.
Your business advisors should be probed for insights about what strategies and tactics could change. They should offer odds or likelihood that key parameters will shift, and then IT should consider which parts of the system are most likely to need updating or revision.
9) Ignoring external data.
The best business intelligence and performance management systems incorporate data from external sources. Weather forecasts are obviously an important factor in determining optimum shipping routes, for example.
Mark Graham Brown, a performance management expert and author, says that external factors such as economic, political, regulatory and consumer trends may need to be considered and incorporated into a BI or performance management system to make it truly effective and useful.
10) Wrong customer data.
If customer satisfaction is a key metric for your organization and the IT department is asked to implement a performance management system to create and track this, ignore urges to just use survey data.
As Brown notes, an annual survey won’t be of much help when you need weekly or monthly updates. And few organizations are surveying customers frequently enough to make a meaningful online metric. You need more granularity. He recommends a customer aggravation metric – collect service call or help desk data, and then score the inquiries based on severity.
Sad to say, there are other commonly made mistakes. What do you think are the biggest mistakes you’ve seen? Too many Key Performance Indicators (KPIs) in the performance management system? Maybe we can prevent repeating the same mistakes in the next decade of the technology.
Ethics and Artificial Intelligence: Driving Greater Equality
FEATURE | By James Maguire,
December 16, 2020
AI vs. Machine Learning vs. Deep Learning
FEATURE | By Cynthia Harvey,
December 11, 2020
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2021
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.