IBM has traveled a long path to make artificial intelligence (AI) more accessible. Its Big Blue supercomputer famously beat world chess champion Gary Kasparov and Watson captured the public’s attention when it beat the reigning Jeopardy champion Ken Jennings.
And a recent and amusing ad for Watson features Bob Dylan with Watson telling the iconic folksinger that he can read 800 million pages a second. Intones Dylan, dryly: “That’s fast.”
Such high profile stunts are great publicity, but enterprises are more interested in practical applications than winning games or analyzing all of Dylan’s song lyrics (which Watson did). Fortunately IBM has delivered, evolving Watson into a service used across a variety of industries from medicine to sports. Watson has its own developer ecosystem and a cloud-based platform called IBM Bluemix that gives developers the opportunity to tap into Watson’s capabilities to create new “intelligent” apps.
The Bluemix community consists of 77,000 developers who are prototyping and building what IBM’s calls “cloud-based cognitive computing applications.” Over 350 IBM partners have developed cognitive powered apps out in the market today ranging from industries like healthcare to financial services to retail.
A Fluid Shopping Experience
A company called Fluid has used Watson to create the Fluid Expert Personal Shopper app designed to help consumers find the products they want more quickly at a retailer’s website. For questions about whether you want a wind-resistant coat, for example, the Fluid app helps you shop via a series of interactive panels based on whether the temperature will fall below freezing where you’re likely to wear it.
Steve Abrams, a Distinguished Engineer & the Director of Technology Solutions for the IBM Watson Group, says Fluid is being used both in-store and to enhance an ecommerce site. “You log in with your social media and it ingests what you’ve written and Watson has a personality insight, and Watson has a personality matrix covering 52 different dimensions of personality.” From all that data, he says, the app gleans such things as whether you’re more introverted or extroverted and then suggests products based on that analysis.
On the sport side, some pro teams are using Watson to enhance fan engagement. Log in at the stadium and Watson will engage you with relevant blogs and fantasy sports options you can play during the event. It will even provide comments on certain sports writers, noting, for example, if they’re considered biased.
Amazon Machine Learning
As for Amazon, analyst Charles King of Pund-IT says it’s doing a great job of making predictive analytics built on its Amazon Web Services (AWS) easy to use and accessible.
“Amazon offers a simplified platform for developers who want to start working with machine learning without a lot of stress or specialized tools or investment,” King, Principal Analyst at Pund-IT, told Datamation. “Typically machine learning has required developers to have a lot of specialized training, and required businesses who want to use it to invest in software tools and specialized algorithms and the hardware to support extremely large data sets.”
Amazon customer BuildFax tracks housing remodels and new commercial construction for insurance companies. BuildFax uses Amazon Machine Learning (ML) for predictive modeling and gives roof-age and job-cost estimations for insurers and builders. The company uses data sets from public sources and from customers to build models.
With Amazon ML, models that previously took BuildFax six months or longer to create are now complete in four weeks or less. The company also says Amazon ML creates opportunities for new data analytics services BuildFax can offer customers, such as text analysis to estimate job costs with 80 percent accuracy.
BuildFax CTO and founder Joe Emison says Amazon ML democratizes the process of building predictive models. “It’s easy and fast to use, and has machine-learning best practices encapsulated in the product, which lets us deliver results significantly faster than in the past.”
Jack Gold, Principal Analyst with J.Gold Associates, says IBM and Amazon are among those at the forefront of making AI more accessible for real world enterprise applications and it won’t be long before it’s more commonplace.
“What IBM is trying to establish with the Watson analytics engine is not just storing and acquiring data, but taking all that information and doing something meaningful with it as an AI service or Intelligence as a Service,” Gold tells Datamation. “Ultimately everyone is going to want to take advantage of these kinds of systems because companies have so much data they don’t know what to do with.”
No Big Iron Investment Needed
For budget-constrained enterprises, Gold says IBM’s approach is attractive because they don’t need to buy and maintain their own mainframe to leverage Watson’s technology.
“IBM understands that they are not a hardware company per se anymore, that’s not where the future lies with them. The real money is in services, and a lot of Watson has ties to professional services,” says Gold. (Of course, you don’t need to buy hardware for Amazon either, which has been a pay-as-you-go service from the start).
Ultimately, Gold says enterprises will inevitably use deep learning systems like Watson (or Amazon or systems from Google, Microsoft and others) because they have more data than they know what to do with. As these systems evolve, they will get better at extracting meaningful insights from all the data being collected.
The Deep Learning Road Ahead
Gold says we’re at a very early stage with these systems and IBM is smart to get developers involved, creating solutions that expand Watson’s appeal. “They’re providing tools on top of Watson, but building out the ecosystem is going to take a while,” he said.
IBM’s Abrams says there are a lot of hot areas in terms of developer interest. “Medical has been strong and growing. We launched the Watson Health Group a few months to capitalize on the interest as a new business unit,” he said.
Asked what is the best Watson app so far, Abrams defers. “It’s the one that hasn’t been written yet. The growth trajectory and partner interest we’re seeing is unbelievable. This time next year I’m sure we’ll see a new set of applications we didn’t anticipate.”
Big data and social technologies analyst Andreas Weigend says these new deep learning systems will have a lot of implications for retailers and other industries going forward.
“Think about facial recognition and emotion recognition. If you are a manager in a retail store, you would be able to tell know which staff members are doing well because you have a system that can read the facial expression of clients,” says Weigend. “I think we’ll see more of how work gets done and systems that decompose work. The notion of education and work hasn’t changed that much in the last thousand years, but stay tuned, change is coming.”
Photo courtesy of Shutterstock.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.