By Nitin Donde, Founder and CEO, Talena, Inc.
Increasingly, companies understand the central role that data can play in their success, and they respect data as a critical business asset. As a result, companies are more committed than ever to protecting, managing and analyzing data within today’s modern architectures. One thing is certain: for many, big data offers opportunity and challenge in equal measure.
So what big data trends will move past their natural cycles of hype to real-world deployment? How will we work to ensure that essential data is easily accessible and always secure? What role will machines play in our learning in the coming months and years ahead?
Here are our picks for five areas that will remain at the top of the list in 2017:
Not all data is relevant all the time. Server metric or log data is highly relevant to understanding how a particular infrastructure is performing at a given point in time but kept at most for 30 or 60 days. Customer purchases are often kept for quarters for trending or pattern analysis and sometimes years for compliance reasons. Light speed and deep analysis—most companies today need both. Understanding the value of short- and long-lived data, how business-critical the data is, and the value in data purging, are all critical considerations. Each has a role to play in a company’s success and this will continue moving forward.
These considerations will be increasingly relevant for companies as they think about how to store and process these different data sets. Multiple concerns come into play: identifying the necessary data management infrastructure, investing in the right deployment model and optimizing storage consumption.
According to Cisco’s recent Global Cloud Index (GCI) forecast, public cloud computing is growing at a much faster rate than the private cloud. The report projects that by 2020, 68 percent of all cloud workloads will be in public cloud data centers, up from 49 percent in 2015.
The recent announcement of WorkDay choosing AWS over its own private cloud is a clear indicator of how even large, established companies increasingly trust the public cloud for critical workloads. What’s more, it’s expected that the total volume of data generated by IoT alone will reach 600 zettabytes per year by 2020, 275 times higher than projected traffic going from data centers to end users.
As cloud-based deployments become increasingly mainstream, companies must understand the scale, security and compliance implications of how data is processed and stored as part of their new or forklifted workloads.
Today’s growing data assets rarely stay static in a single infrastructure environment. For greater business agility, they are always on the move — from a storage environment to an analytics cluster, or from an on-premise datacenter to the public cloud.
The combination of volume and velocity of these bigger data assets make many privacy advocates nervous about the potential for not just data breaches (hello, Yahoo!) but also for data exposure to employees not authorized to view these assets. Yet there are steps that enterprises can take to overcome the agility-privacy divide and still emerge successfully in a world increasingly based on rapid processing of large data sets.
The common dictum that “no enterprise is an island” applies equally to their big data infrastructure. Companies will continue to use different big data systems for different business purposes, and because these data assets are often on the move, there is a need for transparency around the customer privacy contract. Most privacy concerns are often related to the notion that data is “secure” and won’t be knowingly or unwittingly shared with any third party, but these attitudes often fail to consider the concept of unintended internal access to these data sets.
Thinking beyond breaches to better understand and address compliance exposure and compliance issues will become a bigger part of security discussions and strategies. And due to the speed by which data moves, it is imperative to think about — and protect — data as it moves across the enterprise.
While most companies agree that the real value of data lies in their ability to filter, analyze and interpret it, Forrester Research found that most of the companies they surveyed are analyzing just 12 percent of the data they have.
What’s more, the “adoption of technology to continuously analyze streams of events” continues to accelerate as it is “applied to IoT analytics, which is expected to grow at a five-year compound annual growth rate (CAGR) of 30%” according to IDC.
Optimizing procedures and IT operations to deliver improved business outcomes is key, and companies should focus efforts on better understanding which information is valuable and which can be largely ignored. Taking advantage of analytics on typically idle and typically used data assets such as backup copies is another way in which companies can shed light on customer interactions and revenue trends, while simultaneously reducing data processing costs.
Analytics will continue to have an enormous impact in almost all industries, including health care, retail, e-commerce and financial services. The speed with which companies can analyze and react will be increasingly critical — and for many will mean the difference between success and failure.
In a recent survey of executives at 168 companies with more than $500 million in sales, 76 percent of them are targeting higher growth via machine learning. Without question, big data has greatly accelerated its relevance. Companies who have seen the need for processing and storing large and diverse data sets now need to understand what the data means — and need to do so at a granular level. Machine intelligence based on machine learning proves to be an invaluable asset in this effort.
The coming years will see a rapid intertwining of big data technologies and processes with machine learning techniques to enable the more than 35 zettabytes of data generated in 2020 to deliver useful and impactful business outcomes. If it’s not impacting your organization today, we predict that it will be in short order.
Those of us in IT are used to riding the waves of change and preparing for them. 2017 will be no different, no matter what the hottest tech trends happen to be. Successfully managing the challenges inherent in running a business in today’s data-centric world will reap big rewards for many.
Photo courtesy of Shutterstock.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.